Postsynaptic Positioning of Endocytic Zones and AMPA Receptor Cycling by Physical Coupling of Dynamin-3 to Homer

نویسندگان

  • Jiuyi Lu
  • Thomas D. Helton
  • Thomas A. Blanpied
  • Bence Rácz
  • Thomas M. Newpher
  • Richard J. Weinberg
  • Michael D. Ehlers
چکیده

Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retaining Synaptic AMPARs

Endocytosis, exocytosis, and lateral diffusion are key mechanisms for AMPA receptor trafficking. Endocytosis of AMPARs and other postsynaptic proteins has been proposed to occur at specific endocytic zones (EZs), but the mechanisms that regulate this process are not at all clear. In this issue of Neuron, Lu et al. show that correct synaptic EZ positioning requires links between the GTPase dynam...

متن کامل

Dynamin-dependent endocytosis of ionotropic glutamate receptors.

Little is known about the mechanisms that regulate the number of ionotropic glutamate receptors present at excitatory synapses. Herein, we show that GluR1-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) are removed from the postsynaptic plasma membrane of cultured hippocampal neurons by rapid, ligand-induced endocytosis. Although endocytosis of AMPA...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Janus-faced trafficking at glutamatergic synapses.

R apid communication in the nervous system requires the release and detection of neurotransmitters at synapses. These two events occur at opposite faces of the synaptic cleft and involve very different cellular machinery in presynaptic and postsynaptic compartments. Such asymmetry, manifested by synaptic vesicle exocytosis and recycling at the presynaptic terminal and receptor activation and ge...

متن کامل

PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin

Clathrin-mediated endocytosis (CME) is used to internalize a diverse range of cargo proteins from the cell surface, often in response to specific signals. In neurons, the rapid endocytosis of GluA2-containing AMPA receptors (AMPARs) in response to NMDA receptor (NMDAR) stimulation causes a reduction in synaptic strength and is the central mechanism for long-term depression, which underlies cert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2007